منابع مشابه
Nearly positive matrices
Nearly positive matrices are nonnegative matrices which, when premultiplied by orthogonal matrices as close to the identity as one wishes, become positive. In other words, all columns of a nearly positive matrix are mapped simultaneously to the interior of the nonnegative cone by mutiplication by a sequence of orthogonal matrices converging to the identity. In this paper, nearly positive matric...
متن کاملSingular value inequalities for positive semidefinite matrices
In this note, we obtain some singular values inequalities for positive semidefinite matrices by using block matrix technique. Our results are similar to some inequalities shown by Bhatia and Kittaneh in [Linear Algebra Appl. 308 (2000) 203-211] and [Linear Algebra Appl. 428 (2008) 2177-2191].
متن کاملBlock Diagonalization of Nearly Diagonal Matrices
In this paper we study the effect of block diagonalization of a nearly diagonal matrix by iterating the related Riccati equations. We show that the iteration is fast, if a matrix is diagonally dominant or scaled diagonally dominant and the block partition follows an appropriately defined spectral gap. We also show that both kinds of diagonal dominance are not destroyed after the block diagonali...
متن کاملr-Indecomposable and r-Nearly Decomposable Matrices
Let n, r be integers with 0 ≤ r ≤ n− 1. An n×n matrix A is called r-partly decomposable if it contains a k×l zero submatrix with k+l = n−r+1. A matrix which is not r-partly decomposable is called r-indecomposable (shortly, r-inde). Let Eij be the n × n matrix with a 1 in the (i, j) position and 0’s elsewhere. If A is r-indecomposable and, for each aij 6= 0, the matrix ∗Research supported by Nat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2014
ISSN: 0024-3795
DOI: 10.1016/j.laa.2014.01.027